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Abstract

This paper is devoted to the study of an extended global algorithm
on computing the top eigenpairs of a large class of matrices. Three ver-
sions of the algorithm are presented that includes a preliminary version
for real matrices, one for complex matrices, and one for large scale sparse
real matrix. Some examples are illustrated as powerful applications of
the algorithms. The main contributions of the paper are two localized
estimation techniques, plus the use of a machine learning inspired ap-
proach in terms of a modified power iteration. Based on these new tools,
the proposed algorithm successfully employs the inverse iteration with
varying shifts (a very fast “cubic algorithm”) to achieve a superior esti-
mation accuracy and computation efficiency to existing approaches under
the general setup considered in this work.

1 Introduction. Extended global algorithm

The top eigenpairs of matrix play an important role in many fields. In partic-
ular, for the maximal eigenpair for instance, there are well-known algorithms
in several different fields. For web-search, it is called PageRank. For economic
optimization, there is so called left-positive eigenvector method (cf. [1; Chap-
ter 10]). For statistics, there is principal component analysis (abbrev. PCA)
which is also used in quantum mechanics computation (quantum chemistry in
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particular) and AI. In the last case, one needs not only the maximal one, but
also a couple of the subsequent eigenpairs. Certainly, for such a well-developed
field, there are some powerful algorithms in common use, the “singular value
decomposition” (abbrev. SVD) for PCA for example. However, as mentioned
at the beginning of [9; p.65, §2.6]: “In some cases, SVD will not only diagnose
the problem, it will also solve it, in the sense of giving you a useful numer-
ical answer, although, as we shall see, not necessarily ‘the’ answer that you
thought you should get.” This happens for a number of known algorithms (see
[7; Example 1] for instance) and so more careful study is valuable.

This paper is motivated by the study on the global algorithms given in
[3, 7], where some effective algorithms were presented for computing the max-
imal eigenpair of a rather larger class of matrices. Roughly speaking, two
approaches are adopted there: the power iteration (abbrev. PI) and the in-
verse power iteration with varying/fixed shifts (abbrev. IPIv/IPIf ). The PI
has only a little restriction on the initial vector and so has a wide range of
applications. It is also economical (having lower computational complexity),
but has a quite slow convergence speed, especially near the target eigenvalue.
The fast convergence speed of the algorithms given in [3, 7] is mainly due to
the use of IPIv (having higher computational complexity). It is however quite
dangerous if the initial is not close enough (from above) to the target eigen-
value. The last problem was avoided in [3, 7] mainly due to the assumption:
the off-diagonal elements of the matrix are all nonnegative. This is essen-
tial: it implies the existence of the maximal eigenpair (as an application of
the Perron–Frobenius theorem, by a shift if necessary). Then we have some
important variational formulas for the upper/lower bounds of the maximal
eigenvalue, i.e., the Collatz–Wielandt (abbrev. C-W) formula (cf. [2; §1 and
Corollary 12]). For nonnegative matrix, the formula takes the following form:

sup
xą0

min
k

pAxqpkq

xpkq
“ λ “ inf

xą0
max
k

pAxqpkq

xpkq
,

where λ is the maximal eigenvalue of the matrix A and xpkq is the kth com-
ponent of the vector x. The upper bound in the formula is very important in
using IPIv for avoiding the pitfalls (cf. [4; §4]). Now, a challenge appears:

Question: What can we do without the assumption of the nonnegative prop-
erty of the off-diagonal elements?

A typical model led to the question is PCA, for which some of the off-
diagonal elements can be negative. The question is quite serious since almost
each advantage introduced in the previous paragraph is lost. We do not have
the Perron–Frobenius theorem; more seriously, we do not have the C-W for-
mula; and furthermore, the IPIv is not practical.

Certainly, the answer to the above question is not obvious. If you have
luckily produced enough courage, you may look for a way to find a substitute
of the C-W formula. Assume that the given matrix A is real. Assume also



1638 Mu-Fa Chen and Rong-Rong Chen

for a moment that the maximal eigenvalue λ we are working is positive. Of
course, at the present case, the corresponding eigenvector g is not necessarily
positive, and it may have negative or zero components. Because we are now
bare-handed, to find an exit from the darkness, we have to go back to the
original position: all we know is the eigenequation:

Ag “ λg. (1)

That is, g is an eigenvector corresponding to the eigenvalue λ of A. It follows
that once gpkq ‰ 0, we must have pAgqpkq{gpkq ą 0, here we have preassumed
that λ ą 0. If a vector x produced by our iterative method (either PI or IPI)
is close enough to g, then in one iteration, we have

x « g ùñ Ax « Ag “ λg.

We now arrive at the first localized estimation technique: check sign and
locally bilateral estimates (abbrev. CS-LBE). Due to the property given above,
on the set

Nx :“ tk : |xpkq| ą 0u, (2)

we should have
Ax

x
pkq :“

Axpkq

xpkq
ą 0, k P Nx, (3)

since λ ą 0 by assumption. As usual, here “k P Nx” means “for each k P Nx”.
The procedure checking (3) is called “check sign” (abbrev. CS). Once this
holds for a few of iterations, then we do not need to check it again, just
continue the PI until the relative difference (abbrev. RD)

1´ min
kPNx

Ax

x
pkq

N

max
kPNx

Ax

x
pkq ă ε (4)

for some sufficiently small ε. Under condition λ ą 0, assertions (3) and (4) are
actually due to the convergence of PI, assuming for a moment that the maximal
eigenvalue coincides with the maximal one in modulus. In practice, one has to
take care for the initial vector in using PI to guarantee its convergence. Next,
using condition λ ą 0 again, by (3), we have

either p0 ăq
Ax

x
pkq ď λ or

Ax

x
pkq ě λ for each k P Nx.

Hence under condition (4) with ε ! 1, we obtain the following locally bilateral
estimates (abbrev. LBE):

p0 ďq min
kPNx

Ax

x
pkq ď λ ď max

kPNx

Ax

x
pkq, (5)

the equalities in (5) hold once x is taken to be an eigenvector of the correspond-
ing eigenvalue λ. We now regard (5) as a substitute of the C-W upper/lower
estimates, and adopt

z :“ max
kPNx

Ax

x
pkq (6)
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as an upper bound of λ for the use in IPIv or IPIf . Condition (4) guarantees
the validity of LBE (5) and then (6). Thus, in (3)–(6), we use only those x
in a small neighborhood of the eigenvector of λ in the corresponding vector
space. That is the meaning of “locally” used above.

In the above paragraph, we preassume that the maximal eigenvalue coin-
cides with the one in modulus and is positive. This is important not only in
computing the ratios above but also an essential point in the use of PI, since
for which, the leading term in the algorithm is determined by the maximal
eigenvalue in modulus, one cannot ignore the point “in modulus” here. Cer-
tainly, if one has known in advance that the spectrum (at least the top six
eigenvalues) of A has satisfied the assumption, then the step we are working
can be ignored. Otherwise, to remove the assumption, we simply use a shift
operator : replacing A by

A1 :“ A` θ̄ I, (7)

θ̄ “

#

θ if the order of A is bigger than 6 and θ is an integer,

rθu otherwise

where rxu denotes the minimal integer that is greater or equal to x, and the
constant θ is an upper bound of the spectral radius. Here, the use of θ̄ instead
of θ is to simplify the computation. Clearly, the spectrum of A1 is nonnegative.
Therefore, working on A1, the assumption just mentioned holds automatically.
The reason that we choose the top six eigenpairs is to compare with the “eigs”
package of MatLab, which is designed for the same aim (See section 4 below).
Certainly, one can continue the algorithm for additional subsequent eigenpairs.

There are two ways to obtain an upper bound of the spectral radius of
general complex matrix A without additional restriction. The first one is a
theoretic result, deduced by the Gershgorin Circle Theorem (cf. [10]):

θ “ min
 

}A}8, }A}1
(

, }A}8 :“ sup
i

ÿ

j

|aij |, }A}1 “ }A
˚}8

where A˚ denotes the transpose of A. In the symmetric case, the two terms
in t¨ ¨ ¨ u are the same. The disadvantage of this method is that the result is
usually quite rough. We now introduce the second numerical method which is
similar to the technique deducing (1) – (6) above. Since we are now interested
only in the modulus of the eigenvalue λ, instead of (1), we should start at

|Ag| “ |λ| |g|.

Next, we follow the analysis between (1) and (6). The output x produced by
PI, with suitable initial and after enough iterations, should have the following
property. With the same Nx defined by (2), replacing

Ax

x
by

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

, λ by |λ|, and z by θ,
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we obtain the analogs of (4) – (6) as follows:

1´ min
kPNx

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

pkq

N

max
kPNx

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

pkq ă ε,

min
kPNx

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

pkq ď |λ| ď max
kPNx

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

pkq,

θ :“ max
kPNx

ˇ

ˇ

ˇ

ˇ

Ax

x

ˇ

ˇ

ˇ

ˇ

pkq. (8)

Starting from 1{}1}, where 1 is the constant column vector having its compo-
nent 1 everywhere and }x} is the L2-norm of x. The resulting θ defined by (8)
is what we need for (7). This method is especially good for PI, it converges
economically to λ˚, the maximal eigenvalue in modulus, but not the real max-
imum, effective enough unless it is too close to λ˚. Hence this method is good
enough for our purpose. The value of θ is noticeable since a larger θ makes
the lower convergence speed of PI:

λ1 ą λ2 ą 0 ùñ p0, 1q Q
λ2 ` α

λ1 ` α

İ

§ as α pą 0q Ò .

We emphasize that the constant θ defined by (8) is used only in (7) for produc-
ing a matrix with nonnegative spectrum having positive six top eigenvalues.
In the subsequent estimation of the eigenpairs, one does not use it again. In
the special case that the given matrix already has the required property just
mentioned above, one can simply ignore this shift procedure.

Usually, one needs to run the IPIv only for a few of iterations since its
convergence speed is very fast. Otherwise, the calculation will overflow quick-
ly. The computation can be finished once the output arrives at the required
precision level:

max
kPNx

Ax

x
pkq ´ min

kPNx

Ax

x
pkq ă ε, (9)

the left-hand part above is called the amplitude of LBE. If we do not want
to compute the next eigenpair, then we can stop the computations here. If
otherwise, one has to improve the precise level of the output of the eigenvector.
For this, one should continue the work, using IPIf instead of IPIv. This is
important since for computing the next eigenpairs, we will go to the subspace
which is orthogonal to this eigenvector. The computation of orthogonalization
often requires a higher level of precision. Failure to achieve such a precision
often leads to error propagation and thus incorrect final results.

We now discuss the construction of the initial vector used by PI. First, for
the maximal eigenpair, simply choose the initial vector

x0 “ 1{}1}. (10)

Once the computation of the maximal eigenpair is done, we obtain the first
(maximal) eigenvector, say g1. After k ´ 1 steps, we have k ´ 1 eigenvectors
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tg1, ¨ ¨ ¨ , gk´1u (normalized with respect to their L2-norm, respectively). Then
the initial vector for computing the kth eigenpair can be chosen to be the
projection vector of x0 defined by (10) on the space which is orthogonal to
Span tg1, ¨ ¨ ¨ , gk´1u. In general, for a given linear space L , let L K denote its
orthogonal space. Then, the projection Proj px, kq of a vector x on the space
Span tv1, ¨ ¨ ¨ , vku

K is defined by

Proj px, kq “ x´
k
ÿ

j“1

pv˚j xqvj (11)

for normalized orthogonal family tv1, . . . , vku, where v˚ (row vector) is the
transpose of v (column vector).

To study several eigenpairs, one may assume that the matrix A has real
spectrum. Otherwise, for a complex eigenpair, one may have a conjugate one.
This poses some difficulty.

At the last step, return to the original matrix:

Eigenpair pλ, gq of A1 Ñ Eigenpair pλ´θ̄, gq of A. (12)

Input: Construct A1 by (7) and (8)

Run IP using initial (10).
If at some iteration, (3) holds,
then look at (4) instead of (3)

If (4) holds with ε “ 10´2, then use
pz,Axq in (6) as initial pz0, v0q for IPIv

Run IPIv until (9) holds with ε“ 10´6

Return to
original A

by (12)

Repeat the diagram
for computing sub-
sequent eigenpairs

With pzn, vnq
obtained as new
pz0, v0q, run IPIf

until (9) holds
with ε “ 10´12

Stop IPIv Continue

Figure 1: Flowchart of the preliminary version of the extended global algo-
rithm



1642 Mu-Fa Chen and Rong-Rong Chen

We now make some additional analysis on the preliminary version of the
extended global algorithm in Fig. 1, as well as on the three algorithms used
there: PI, IPIv and IPIf . While the localized estimation technique “check
sign and locally bilateral estimates”(CS-LBE) mentioned above looks rather
simple, the simplicity is precisely its biggest advantage – it can be applied
to a rather wide range of applications, as we will see soon in the subsequent
sections. The CS-LBE presents new opportunities to use techniques from
a variety of fields such as optimization theory, machine learning, etc., since
almost no theoretical results are available in this general setup. What we
propose here is the (modified) PI. One may see a concrete example in the next
section. Note that the choice of ε used for (4) or (9) in Fig. 1 may be changed
according to different types of matrices used in various applications. Roughly
speaking, one may use ε P r0.01, 0.1s instead of ε “ 0.01 in (4) for medium size
matrices. At this beginning step, we have used the main advantages of PI: it is
safe and allows quite general initial vector, it has a good enough convergence
and computing speed, except close too much to the target eigenvector.

Having the initial vector v0 produced by the CS-LBE technique and the
initial shift given by (7) at hand, we are ready to apply IPIv to accelerate the
computing speed. Under the conditions (3) and (4), instead of (5), we have

min
kPNx

Ax

x
pkq ď

x˚Ax

x˚x
ď max

kPNx

Ax

x
pkq.

Replacing the term z given on the right-hand side by the middle one x˚Ax
}x}2

,

the IPIv becomes the so-called Rayleigh Quotient Iteration (abbrev. RQI),
which is well-known a cubic algorithm (i.e., the iterative solutions generated
by the algorithm converge cubically). Note that RQI is practical only if x is
close enough to the target eigenvector, and hence is also a local algorithm. In
particular, it is actually in a dangerous region once

x˚Ax

x˚x
P

„

min
kPNx

Ax

x
pkq, λ

˙

.

However, since the precise local region over which the RQI is effective is not
known, practical use of RQI often runs into the issue of converging to other
eigenvectors that are close to the target ones. The last point is the main
difference between our IPIv and RQI. The proposed IPIv ensures the algorithm
robustness and allows convergence to the target eigenvector by adapting the
shifts automatically. As verified by the practice in [4, 7] and the subsequent
sections, the difference given in (4) goes to zero very fast. then so is the
difference

max
kPNx

Ax

x
pkq ´

x˚Ax

}x}2
.

Hence, it is believable that IPIv and RQI should have the same order of con-
vergence speed, once RQI works.
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For IPIf , the initial vector v is similar to those of PI; the initial shift z of
IPIf should be bigger than the target λ. Otherwise, the algorithm becomes
dangerous. Certainly, IPIf is more effective if the initial pair pz, vq is closer
to the target one. In Fig. 1, IPIf is used in the last step to improve the target
eigenvector. For which, IPIv may no longer be practical since the inverse
matrix would be degenerated too fast. The convergence by IPIf can be faster
than PI whenever the shift is close enough to the target λ from above.

We now summarize roughly the comparison the three algorithms: PI, IPIv
and IPIf . Let

DpUq “ Domain of suitable initial (vector, shift) of algorithm U,

spUq “ Convergence speed of algorithm U,

tpUq “ Computational complexity of algorithm U.

From low to high is ordered by “ă”.

Certainly, for PI, the shift variable is free in DpUq. Then, roughly speaking,
we have the following comparison

DpPIq Ą DpIPIf q Ą DpIPIvq,

spPIq ď spIPIf q ď spIPIvq,

tpPIq ă tpIPIf q ă tpIPIvq.

A mixed algorithm of PI and IPIv was used in [4, 7]. In the present
paper, we introduce some extended algorithms which have more mixture of
the above three algorithms, making best use of the advantage and bypassing
the disadvantage of each of these three algorithms.

The next section is an exception where the algorithm is applied to the
so-called Hermitizable complex matrix, not the real one treated in most part
of the paper, to illustrate the wide use of the algorithm. Certainly, from the
preliminary version to more general situation, additional work is required, as
shown in §3 by the algorithm for large scale sparse matrix. The powerful
algorithm is then illustrated by two examples in §4. If a reader is eager to
take a look at the power of the proposed algorithm introduced in the paper,
he or she can skip Sections 2, 3, and go directly to section 4.

2 Application to Hermitizable matrix

Consider the following complex matrix (cf. [5; Example 7])

A0“

¨

˚

˚

˚

˚

˚

˚

˝

´6 8
5 ´

6 i
5

8
13 `

14 i
13

18
17 `

4 i
17

3` 9 i
4 ´55

4 ´ 5
13 `

40 i
13

30
17 `

35 i
17

12
5 ´

21 i
5 ´4

5 ´
32 i
5 ´13 60

17 ´
66 i
17

63
10 ´

7 i
5

28
5 ´

98 i
15

70
13 `

77 i
13 ´16

˛

‹

‹

‹

‹

‹

‹

‚

.
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A complex matrix A “ paijq is called Hermitizable if there exists a positive
measure µ “ pµkq such that µiaij “ µj āji for each pair pi, jq (due to [5]).
It is called symmetrizable in the real context. It is easy to check that A0 is
Hermitizable with respect to µ:

µ0 “ 1, µ1 “
8

15
, µ2 “

10

39
, µ3 “

20

119
.

In general, from the proof of [5; Theorem 20], it is known that a complex
matrix A “ paijq is Hermitizable w.r.t. measure µ “ pµkq iff

A “ Diag pµq´1AHDiag pµq rAH :“ Ā˚s. (13)

Equivalently,
Â :“ Diagpµq1{2ADiag pµq´1{2 (14)

is Hermitian. Clearly, the transformation of the eigenpair pλ, gq of A to the
one pλ, ĝq of Â goes as follows.

pλ, gq Ñ
`

λ, ĝ“Diagpµq1{2g
˘

. (15)

At the moment,

Â0“

¨

˚

˚

˚

˚

˚

˚

˚

˝

´6 p4´ 3iq
b

3
10 p4` 7iq

b

6
65 p9` 2iq

b

7
85

p4` 3iq
b

3
10 ´55

4 ´2´16 i?
13

p6` 7iq
b

14
51

p4´ 7iq
b

6
65 ´2`16 i?

13
´13 p10´ 11iq

b

42
221

p9´ 2iq
b

7
85 p6´ 7iq

b

14
51 p10` 11iq

b

42
221 ´16

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Due to (15), for computing the eigenpair of A0, it suffices to study the one for
Â0. Hence, from now on, we need only to consider the matrix Â0.

The maximal eigenpair

We now start the algorithm given in Fig. 1. The computation in this section
is done by using Mathematica (version 11.3) on PC.

Step 1. Construct A1. The upper bound produced by the first method
given in §1 is θ

`

Â0

˘

“ 29.957. We now consider the second method.
Starting at w0 “ 1{}1} (cf. (10)) and use the following PI:

wn “ Â0vn´1, n ě 1, vn :“ wn{}wn}, n ě 0.

Let
$

’

’

’

’

&

’

’

’

’

%

N pwq “ tk : |wpkq| ą 0u,

xn “

"ˇ

ˇ

ˇ

ˇ

Â0wn

wn

ˇ

ˇ

ˇ

ˇ

pkq, k P N pwnq

*

,

yn “ min
kPN pwnq

xnpkq, zn “ max
kPN pwnq

xnpkq.
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Then in 5 iterations, the outputs are as follows.

tzn, ynu
5
n“1 : p21.2379, 5.26626q, p27.0853, 17.7591q, p27.2742, 17.6156q,

p21.9304, 17.52740q, p21.6953, 17.4757q;

t1´ yn{znu
5
n“1 : .752035, .344325, .354132, .200772, .194493.

Clearly, PI converges very well. Since z4 and z5 are closed each other, for them
we have the same θ̄ “ 22 which is an upper bound of the spectral radius of Â0

and is obviously smaller than the one obtained by the first method. Actually,
if we continue PI for more iterations,

z5 “ 21.6953, z10 “ 21.5148, z20 “ 21.7481, z30 “ 21.4567, z40 “ 21.3927,

then we get the same θ̄, since the convergence becomes rather slow when zn is
close to the modulus of the maximal eigenvalue λ˚ “ ´21.3806. Thus by (7),
we have

A1“ Â0 ` θ̄ I

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

16 p4´ 3iq
b

3
10 p4` 7iq

b

6
65 p9` 2iq

b

7
85

p4` 3iq
b

3
10

33
4 ´2´16 i?

13
p6` 7iq

b

14
51

p4´ 7iq
b

6
65 ´2`16 i?

13
9 p10´ 11iq

b

42
221

p9´ 2iq
b

7
85 p6´ 7iq

b

14
51 p10` 11iq

b

42
221 6

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

To justify the effectiveness of the shift used here, let us compute the eigenvalues
of A1:

21.8344, 12.5542, 4.24189, 0.619429.

It follows that there is only a little room (about 0.6) for the improvement
of the shift θ̄ “ 22 to keep the positivity of the spectrum of A1. The
transformation of the maximal eigenpair pλ1pA1q, g1pA1qq of A1 to the one
pλ1, g1q :“ pλ1pA0q, g1pA0qq of the original A0 is as follows.

λ1 “ λ1pA1q ´ θ̄, g1 “ Diagpµq´1{2g1pA1q. (16)

Step 2. Run PI. As in Step 1, we use the following PI:

wn “ A1vn´1, n ě 1, vn :“ wn{}wn}, n ě 0.

However, the original initial 1{}1} is replaced by w0 “ p1` iq1{
`?

2}1}
˘

. The
reason is that for non-real A1, since the eigenvalues are all real, the eigenvectors
should be non-real and so as a mimic, it is better to choose w0 to be non-real.
However, this is useless in Step 1, since a nonzero constant factor α can be
ignored in the equation

|Apαvq| “ |λ| |αv|.
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We now come to the essential different point from the real case. Actually,
for non-real A1, instead of the single equation (1), we have two:

Re pA1gq “ λRe pgq, Im pA1gq “ λ Im pgq.

Thus, it is naturally to split the original vector x (corresponding to g in the
eigenequation) into two: xR and xI (corresponding to Re g and Im g, respec-
tively). Similarly we have NR and NI defined as follows.
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

NRpwq “ tk : |Rewpkq| ą 0u, NIpwq “ tk : |Imwpkq| ą 0u;

pn “ A1wn;

xRn “

"

Re pn
Rewn

pkq, k P NRpwnq

*

, xIn“

"

Im pn
Imwn

pkq, k P NIpwnq

*

;

weak

$

&

%

yn “
´

Ź

kPNRpwnq
xRn pkq

¯

Ź

´

Ź

kPNIpwnq
xInpkq

¯

,

zn “
´

Ž

kPNRpwnq
xRn pkq

¯

Ž

´

Ž

kPNIpwnq
xInpkq

¯

;

strong

$

&

%

yn “
´

Ź

kPNRpwnq
xRn pkq

¯

Ž

´

Ź

kPNIpwnq
xInpkq

¯

,

zn “
´

Ž

kPNRpwnq
xRn pkq

¯

Ź

´

Ž

kPNIpwnq
xInpkq

¯

;

(17)

where α^β “ mintα, βu and α_β “ maxtα, βu for real α and β. The last two
parts “weak” and “strong” need some explanation. First, the only difference
is exchanging the “^” and “_” in the middle of definition of pyn, znq. To
understand its essential difference, recall that condition (5) is now split into
two:

pRe xq : min
kPNRpxq

Re pA1xq

Rex
pkq ď λ ď max

kPNRpxq

Re pA1xq

Rex
pkq,

pIm xq : min
kPNIpxq

Im pA1xq

Imx
pkq ď λ ď max

kPNIpxq

Im pA1xq

Imx
pkq.

Now, for the “weak” case in (17) we simply adopt a weaker estimate of pyn, znq
from (Re xn) and (Im xn). And then the “strong” case should be clear. The
weaker version of pyn, znq plays the main role for the safety of converging to the
required eigenpair, but makes a little slower convergence. While the stronger
version makes a faster convergence but it requires that we are at the position
close enough to the target eigenpair. Keeping these ideas in mind, one may
adopt a mixture of these choices in designing the algorithms.

To fix the idea, throughout this section, the weak version of pyn, znq is
adopted at the first use of PI only in the computation of each eigenpair. For
the other steps, we adopt the strong version.

It is the position to start the PI. In 6 iterations, the outputs are as follows.

tzn, ynu
6
n“1 : p22.6771, ´8.15858q, p92.2205, 21.1287q, p25.9135, 20.2681q,

p23.4485, 18.5274q, p22.6331, 19.0585q, p22.2652, 19.8867q;

tzn ´ ynu
6
n“1 : 30.8357, 71.0918, 5.64541, 4.92104, 3.57468, 2.37847;

t1´ yn{znu
6
n“1 : 1.35977, .770889, .217856, .209866, .15794, .106825.
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Note that here y1 ă 0. The outputs show that not only the components of
Rewn and Rewn´1 have the same sign once n ě 2, but also the sequence of
relative difference decreases quite quickly. We choose n “ 6 (ε „ .1) as the
final iteration. Then, we have

v6“p.363237` .491209 i, ´.00786884` .44046 i, .488441´ .0516616 i,

.326973` .290776 iq˚.

Step 3. Run IPIv. Starting at pz0, v0q “ pz6, v6q obtained in the last step,
run IPIv. Here we adopt a little different notation. Let wn solve the equation

pzn´1I ´A1qwn “ vn´1, n ě 1.

and set vn “ wn{}wn} again. Next, define NRpwq, NIpwq and txRn , x
I
n, yn, znu

by (17) with the strong version of pyn, znq.

Note that zn and 1 ´ yn{zn are analogs of (6) and (4) in the complex
context, respectively. Then, in 2 iterations, we obtain

pzn, ynq
2
n“1 : p21.8358, 21.8324q, p21.8344, 21.8344q,

pzn ´ ynq
2
n“1 : .00346973, 5.22045 ¨ 10´7;

t1´ yn{znu
2
n“1 : .000158901, 2.39093 ¨ 10´8,

v2 “ p.359825` .494092 i, ´.0061931` .44037 i, .488017´ .054044 i,

.328093` .289324 iq˚.

Moreover, 1 ´ y2{z2 „ 10´8. This is not too small for the use of IPIf in the
next step.

Step 4. Run IPIf . In the case we want to improve the above result fur-
thermore, we adopt the IPIf . Now, we take pz2, v2q from the last step as our
new initial pz0, v0q. The only change to the last IPIv is using the fixed zn ” z0.
In 3 iterations, if we adopt the same precise digits as the last step, then we
get the same outputs of pzn, ynq as the last one:

tpzn, ynqu
3
n“1 : the same pair p21.8344, 21.8344q;

tyn ´ znu
3
n“1 : t10.6581, 0, 3.55271u ¨ 10´15;

t1´ yn{znu
3
n“1 : t5.55112, 1.11022, 2.22045u ¨ 10´16.

v3 “ p.359825` .494092 i, ´.00619309` .44037 i, .488017´ .054044 i,

.328093` .289324 iq˚.

In what follows, we rewrite pz3, v3q as pλ1pA1q, g1pA1qq which is regarded
as the maximal eigenpair of A1.
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The submaximal eigenpair

From the last part, we have obtained the maximal eigenpair pλ1pA1q, g1pA1qq,
at the machine level of precision, as follows.

λ1pA1q “ 21.834441785286337,

g1pA1q “ p.35982503686976175` .49409186313969483 i,

´ .006193088194633169` .44037016603620777 i,

.48801737987976945´ .054043998846425696 i,

.3280927162424674` .28932402046371486 iq˚.

Step 1. Run modified PI. As an analog (11), the projection of the vector
w on the space Span pg1pA1qq

K is as follows.

w ´
g1pA1q

Hw

pg1pA1qq
Hg1pA1q

g1pA1q rgH :“ ḡ˚s.

The modified PI means the use of the usual PI with the modification by the
projection above at each step. That is

w0 “
p1` iq1
?

2 }1}
,

un “ wn ´
g1pA1q

Hwn

pg1pA1qq
Hg1pA1q

g1pA1q, n ě 0,

wn “ A1
un´1

b

uHn´1un´1

, n ě 1.

Next, similar to (17), replacing w and wn by u and un respectively, we can
define NR, NI , pn, xRn , xIn, and the weak version of pyn, znq. Starting at w0

and running the modified PI, in 5 iterations, we obtain

tpzn, ynqu
5
n“1 : p13.3067, 1.07981q, p12.7854, ´32.9231q, p18.4212, 10.2147q,

p13.9055, 11.5768q, p12.9665, 12.1958q;

tzn ´ ynu
5
n“1 : 12.2269, 45.7085, 8.20655, 2.32871, .770683;

t1´ yn{znu
5
n“1 : .918852, 3.57505, .445495, .167467, .0594367.

Note that here y2 ă 0. We stop at n “ 5 since 1´ y5{z5 is small enough, even
though it is bigger than 10´2. Then, we have

z5 “ 12.9665,

v5 “ p.0677311´ .786181 i, ´.190409` .21529 i, .356539` .247925 i,

.0428153` .322965 iq˚.

Step 2. Run IPIv. Taking pz5, v5q from the last step as new pz0, v0q, run
IPIv. Let wn solve the equation

pzn´1I ´A1qwn “ vn´1, n ě 1,
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and define first vn “ wn{}wn}, and then NRpwq, NIpwq and txRn , x
I
n, yn, znu

by (17) with the strong version of pyn, znq. Now, in 3 iterations, we obtain

tpzn, ynqu
3
n“1 : p12.5546, 12.5507q, p12.5542, 12.5542q, p12.5542, 12.5542q;

tzn ´ ynu
3
n“1 : .00385406, 1.50454 ¨ 10´7, 3.55271 ¨ 10´15;

t1´ yn{znu
3
n“1 : .000306985, 1.19843 ¨ 10´8, 3.33067 ¨ 10´16.

v2“p.604525´ .508517 i, ´.301145` .0168374 i, .0761289` .417867 i,

´ .196423` .2569 iq˚.

v3“p.604525´ .508517 i, ´.301145` .0168374 i, .0761289` .417867 i,

´ .196423` .2569 iq˚.

In the case we do not want to go further, we can stop here at n “ 3 since
1 ´ y3{z3 „ 10´16 is sufficiently small. It is actually too smaller to go to the
next step, otherwise it would cost some computational error.

Step 3. Run IPIf . To have a test, setting pz0, v0q to be pz2, v2q obtained
in the last step, run IPIf also in 3 iterations, we obtain the same output
zn “ yn “ 12.5542 for n “ 1, 2, 3, and

tzn ´ ynu
3
n“1 : t3.55271, 3.55271, 8.88178u ¨ 10´15;

t1´ yn{znu
3
n“1 : t3.33067, 3.33067, 6.66134u ¨ 10´16.

Moreover

v3 “p.6045251632662887´ .5085174051419706 i,

´ .3011448284487476` .016837350902488956 i,

.07612884589652998` .4178669662768421 i,

´ .19642273529356236` .2568995483366027 iq˚.

The present v3 has a much higher precise level than v2 obtained in Step 2. We
now regard pz3, v3q as the submaximal eigenpair pλ2pA1q, g2pA1qq of A1.

Similarly, one can compute the other eigenpairs of A1 but we are not going
to the details here.

Finally, we return to the original eigenpairs of A0 by (16):

λ1 “ λ1pA1q ´ 22 “ ´.165558,

g1 “ Diagpµq´1{2g1pA1q “ p.359825` .494092 i, ´.00848024` .603002 i,

.963757´ .106728 i, .800304` .705737 iq˚

λ2 “ λ2pA1q ´ 22 “ ´9.44576,

g2 “ Diagpµq´1{2g2pA1q “ p.604525´ .508517 i, ´.41236` .0230555 i,

.150342` .825221 i, ´.479127` .626645 iq˚

It is nice chance to learn some thing from the above computation.
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1) In the earlier papers [3] and [7], the sequence tznu should control the
maximal eigenvalue from above, due to the Perron-Frobenius theorem and the
C-W formula mentioned in §1. However, this may not be true in the present
general setup, as can be seen from Step 1 of computing the maximal eigenpair,

z1 ă |λ
˚pÂ0q| “ 21.3806 ă z2 ă z3 ą z4 ą z5 ą |λ

˚pÂ0q|,

the sequence tznu arrives its maximum at z3. In Step 2, we have similarly,

λ1pA1q “ 21.8344 ă z1 ă z2 ą z3 ą ¨ ¨ ¨ ą z6 ą λ1pA1q.

In this case, it follows that the sequence tznu arrives its maximum at z2, and
then it goes down. In both cases, the sequence t1´ yn{znu is decreasing in n
quickly.

Step 1 in computing the submaximal eigenpair is much more interesting.
It illustrates the unstable property of tznu at the beginning. Here we adopt
the modified PI. We have

z1 ą z2 ą λ2pA1q “ 12.5542 ă z3 ą z4 ą z5 ą λ2pA1q.

Correspondingly, for ξn :“ 1´ yn{zn, we have

tξnu
5
n“1 : .918852, 3.57505, .445495, .167467, .0594367.

A big jump happens at z3 since as mentioned earlier, y2 ă 0 and so the
check sign (CS) is necessary. At n “ 5, even though ξ5 „ .059 ą .01, but
z5 “ 13.0168 ą λ2pA1q, and so the use of IPIv in the subsequent step is safe.
Roughly speaking, one can stop PI at the mth iteration, if starting from zm,
the sequence tznuněm converges decreasingly. It is the case if the matrix has
nonnegative off-diagonals, as studied in [3, 7], or the examples given in §4.
In view of this point, one may reduce the number of iterations in using PI
at the beginning of the computation for the maximal/submaximal eigenpair.
More precisely, the PI (Step 2) for computing the maximal eigenpair needs
only 6´ 2 iterations and for submaximal one, it requires only 5´ 1 iterations.
For subsequent IPIv or IPIf , the number of iterations remains the same as the
original in the both cases.

2) All the computations above show that the sequence t1´yn{znun, may be
except a few of terms at the beginning, is monotone decreasing and converges,
much stable than the other sequences, tznu or t|1´ zn{zn´1|u, in the present
general setup. Among the computations above, the exceptional part of the
sequence tξn “ 1´yn{znu appears mainly in the last case just discussed above.
For which, the first 2 terms are unstable, especially the second one is bigger
than 1 since y2 ă 0 as mentioned before. The stability starts at the third
term. It follows that the use of the sequence t1´ yn{znu is more practical and
is actually adopted in the preliminary version of the algorithm given in Fig.
1. For this reason, it seems more precise to rename the “CS-LBE” technique
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by adding the relative difference (RD): CS-RD-LBE technique in the general
situation.

It is hoped that the algorithm given here could be used in the quantum
mechanics computation (cf. [6]).

For the remainder of the paper, we return to real matrices for which Her-
mitizable becomes symmetrizable. By (15), we can reduce a symmetrizable
matrix to a symmetric one. Then, by using (16), we can assume that the given
symmetric matrix has a nonnegative spectrum.

3 A version of the global algorithm for large scale
matrices

As remarked at the end of the last section, we need only to study the symmetric
matrix having nonnegative eigenvalues. In this section, we describe the ex-
tended global (or global for short) algorithm for computing the top eigenpairs
of a large sparse matrix. This algorithm computes the eigenpairs sequentially,
starting from the top eigenpair and then uses the previously computed pi´ 1q
eigenpairs to compute the next ith eigenpair. The flowchart of the algorithm
for computing the ith eigenpair is shown in Fig. 2.

We first summarize the key points of the proposed algorithm as follows.

• The inputs to the algorithm are the first i ´ 1 eigenpairs tpλj , vjq,
j “ 1, ¨ ¨ ¨ , i ´ 1u that have already been computed using the same al-
gorithm. Here, λj denotes the jth largest eigenvalue and vj denotes the
jth eigenvector.

• At the initial iteration n “ 0, we initialize with y0 given by (10).

• Starting from the initial vector y0, run a procedure called “Check sign
with locally bilateral estimates (CS-LBE)” to determine initial shift z0
and the corresponding eigenvector estimate x0. This procedure involves
running multiple power iterations with projection and check sign, and
estimating z0 based on the locally bilateral estimates (an analog of (5)).
Details of the CS-LBE procedure will be described later.

• Given xn and zn, determined by the CS-LBE procedure, we then perform
one iteration of the IPIv: pznI ´ Aqyn “ xn to solve for the updated
eigenvector estimate yn.

• Given yn, we will run the CS-LBE procedure to determine the next shift
zn`1 and the corresponding eigenvector estimate xn`1.

• Given xn`1, we will check whether the accuracy of xn`1 has improved
compared to that of earlier iterations. Detailed criterion used to evaluate
the accuracy of the eigenvector (which corresponds to the amplitude of
LBE given in §1) will be described later.

• If the accuracy of xn`1 has not improved compared to earlier iterations,
then the algorithm has converged. It then outputs the ith eigenpair
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λi “ zn`1, vi “ xn`1 and proceeds with the computation of the pi`1qth
eigenpair. On the other hand, if the accuracy of xn`1 has improved
compared to earlier iterations, then the algorithm proceeds with the
next iteration of IPIv.

• Note that for the nth iteration of the IPIv, if the condition |zn´ zn´1| ă
10´8 is met, then we stop updating the shift and set zn “ zn´1 instead.
That is, we turn to IPIf .

Input: first i´ 1 eigenpairs tpλj , vjq, j “ 1, ¨ ¨ ¨ , i´ 1u

n “ 0; Initialize y0 “ 1{}1}

Start from y0, run CS-LBE
to determine x0 and shift z0.

Given xn, zn, perform one IPIv
pznI ´ Aqyn “ xn to find yn.

Start from yn, run CS-LBE to
determine xn`1 and shift zn`1.

Check if accuracy parameter `
of xn`1, defined in (19), remains
the same in the last 5 iterations.

n “ n`1

If |zn ´ zn´1| ă 10´8,
set zn “ zn´1.

Output: ith eigenpair λi “ zn`1, vi “ xn`1

yes

no

Figure 2: Flowchart of the main algorithm for computing the ith eigenpair.
Assume that the previous i´ 1 eigenpairs have been computed.

Next, we provide more details of the global algorithm. We will first de-
fine the CS-LBE procedure. This procedure requires the following two basic
operations.

Projection operator This is defined by (11). It ensures that after pro-
jection, the vector Projpx, kq is orthogonal to the linear space Span (tvj , j “
1, ¨ ¨ ¨ , ku).

Shift Evaluation Given a current estimate of the eigenvector x, we aim
to determine a proper shift based on the locally bilateral estimates. For large
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sparse matrices, the components of x may decay to zero very quickly. Thus, es-
timation of the shift using all components of x can be unreliable, and sensitive
to the estimation errors of those components of x with very small amplitudes.
In our algorithm, we propose to calculate the shift based on only the principal
components of x such that |xpiq| ě tpxq, where tpxq is a threshold value to
be determined. Estimating the shift based on only principal components with
larger amplitude improves the estimate of the shift. Let x be a unit vector in
the L2-space of dimension N . Given x, we define the shift evaluation func-
tion, denoted by zpxq, as follows. Let xa denote the sorted vector of |x| in the

descending order. Let n1 be the smallest integer such that
řn1

i“1 xapiq
2 ě ε0.

Typically, we set ε0 “ 0.9. This means that the first n1 components of vector
xa captures 90% of the energy of vector x. Let tpxq “ |xapn

1q|. Given x and
y “ Ax, we define the shift evaluation function zpxq by considering only the
major components of x such that |xpiq| ě tpxq:

zpxq “ max
ti:|xpiq|ětpxqu

y

x
piq

„

y

x
piq :“

ypiq

xpiq



. (18)

Input: m “ 0; x1 “ x

m “ m ` 1;

Run one PI: ym “ Axm

Check Sign: check if
ym
xm
piq ą 0 for all |xmpiq| ą ε1

ym“Projpym, kq,
xm`1“ ym{}ym}

Evaluate shift zpxmq

Check if |zpxmq{zpxm´1q ´ 1| ă ε

Output: xm and shift zpxmq

yes

No

yes

No

Figure 3: Flowchart of the compute-shift with locally bilateral estimates (CS-
LBE) procedure.
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This is a modification of (6) for the large scale matrix. Note that in (18), we
adaptively determine the principal components of the estimated eigenvector x
over iterations. This is important to obtain good estimates of the shift zpxq.

In Fig. 3, we show the flow-diagram of the CS-LBE procedure in using the
modified PI (cf. Step 1 of computing the submaximal eigenpair given in §2).
The input to this procedure is an initial estimate of the eigenvector x. The
subscript m is the index of the PI. At the mth PI, we calculate ym “ Axm.
This is followed by a check sign step in which we check whether the condition
that

ym
xm
piq ą 0 is satisfied for all |xmpiq| ą ε1 (analog of (3)).

If check sign fails, then we conduct a projection step on ym to make sure that
the resulting vector is orthogonal to the linear space generated by the first
k ´ 1 eigenvectors. Then we set xm`1 “ ym{}ym} and then proceeds to the
next PI. If the check sign is successful, then we compute the shift zpxmq in
the next step. The shift evaluation function z is defined as in (18). We will
compare the newly computed shift zpxmq with the previous shift zpxm´1q to
see whether the shift values have converged. If so, we will finish the procedure
and output the updated estimate of the eigenvector xm and the shift zpxmq.
Otherwise, the algorithm will proceed with the next PI.

Check eigenvector accuracy Most works in the literature use L2 norm of
the error vector between the true eigenvector and the estimated eigenvector
to evaluate the accuracy of the eigenvector estimation. However, since L2

norm is obtained by summing over all components of the error vector, it can
not accurately describe the accuracy of the individual components. In this
work, we adopt a different metric by examining the accuracy of component-
wise ratios of y “ Ax and x. By the definition of the eigenvector, for each
component xpkq ‰ 0, then the ratio ypkqxpkq´1 should equal the eigenvalue
λ. This is a challenging task for the setting of large matrices due to the
high matrix dimension and the rapid decay of the eigenvectors. Typically,
when the amplitude of a component xpkq is large, the estimation tends to be
more accurate, and thus the ratio ypkqxpkq´1 will be closer to the eigenvalue
λ. For small xpkq, the ratio ypkqxpkq´1 tends to deviate away from λ due
to estimation inaccuracy. Hence, it is meaningful to consider the amplitude
range of xpkq over which all ypkqxpkq´1 are close to λ.

We now arrive at the second localized estimation technique: Accuracy of
the principal components of the approximating eigenvector.

Consider an estimated eigenvector x of dimension N . Let I denote a
permutation of t1, 2, ¨ ¨ ¨ , Nu obtained by sorting the components of |x| in the
descending order. Given I, we define x̃ as x̃piq “ xpIpiqq, i “ 1, ¨ ¨ ¨ , N . Given
the same I, we let y “ Ax and define ỹ as ỹpiq “ ypIpiqq, i “ 1, ¨ ¨ ¨ , N .

• Let m1 “ max
i

!

i : |x̃piq| ą 0
)

.
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• The accuracy parameter ` of the estimated eigenvector specifies the num-
ber of reliable components of x̃. It is defined as

` “ max
1ďiďm1

#

i : max
1ďjďi

ỹ

x̃
pjq ´ min

1ďjďi

ỹ

x̃
pjq ă 10´6

+

. (19)

• Based on the definition of ` in (19), we see that the estimated eigenvector
x achieves a high accuracy for the largest ` components (in absolute
value). In other words, the components of x have high accuracy for all
components xpiq such that |xpiq| ě |x̃p`q|.

Note that in the proposed algorithm shown in Fig. 2, we calculate the ac-
curacy parameter ` for the estimated eigenvector xn`1 according to 19. As the
algorithm proceeds, ` will increase over iterations. We terminate the algorithm
if ` no longer increases over five consecutive iterations.

4 Application to large scale sparse matrices

In this section, we provide two examples of using the global algorithm to com-
pute the top 6 eigenpairs. The two large matrices come from the SuiteSparse
Matrix Collection, publicly available at https://sparse.tamu.edu. We will
compare the proposed algorithm with two other methods. One is the Matlab
Eigs function, which computes the top six eigenpairs of large, sparse matrices.
The other is the modified power iteration method, where we perform the s-
tandard power iteration together with the projection step to compute the top
six eigenpairs. All the experiments presented in this section are executed on
an AMD Ryzen 5 2600 Six-Core Processor with single core CPU speed 3.85
GHz, Memory 32 GB. Matlab version is R2015b Windows 10. Related work
on computing the top eigenpair for large sparse matrices include [12], [11], [8].
In particular, [12], [11] consider the use of inverse iterations using fixed shifts.
This work differs from [12], [11] in the use of the proposed (CS-LBE) proce-
dure to adaptively compute the shifts. Furthermore, the estimated eigenvector
accuracy considered in [12], [11], [8] (for the largest eigenpair only) is similar
to that of the Matlab Eigs function, which only guarantees the accuracy of
a small number of large principal components. In comparison, the proposed
global algorithm achieves a high accuracy for even eigenvector components
with an exceedingly small magnitude.

dixmaanl dataset

This matrix has a dimension of N “ 60000. The number of nonzero ele-
ments (abbrev. nz) is 299998, This matrix is nonnegative, symmetric, and the
range of the elements is between 0 and 154.8089. The sparsity pattern of this
matrix is shown in Fig. 4(a).

https://sparse.tamu.edu
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(a) (b)

Figure 4: Sparsity of the two datasets. (a) dixmaanl (b) roadNet-CA

Table 1: dixmaanl dataset. Computed top 6 eigenvalues using the Global
algorithm, eigs, and modified PI.

global eigs PI

λ1 317.0152899359881 317.0152899359666 317.0152899359881

λ2 317.0058090659085 317.0058090659162 317.0058090659074

λ3 316.9980633932568 316.9980633932683 316.9980633932562

λ4 316.9912300516546 316.9912300516576 316.9912300516548

λ5 316.9849936226963 316.9849936226929 316.9849936226971

λ6 316.9791911040992 316.9791911040974 316.9791911040990

In Table 1, we show the estimated top 6 eigenvalues obtained by each
method. We see that all three methods provide similar eigenvalue estimates
that agree with each other up to 10 decimal points.

In Table 2, we provide detailed comparisons of the three methods in terms
of the accuracy of the eigenvector, the complexity, and the running time. Each
row corresponds to results associated with the ith eigenpair. For instance, the
row corresponds to λ1 reads as follows. The global algorithm estimates the
largest (in magnitude) ` “ 56515 components of the eigenvector v1 accurately
(see (19)). This represents accurate estimation of all components of v1 with
a magnitude that is greater or equal to |v1p`q| “ 8.1 ¨ 10´316. The triple
p288, 40, 5q means that in order to achieve this accuracy, the global algorithm
took a total of 288 power iterations, including 40 iterations for inverse power
iterations (35 of IPIf and 5 of IPIv). The global algorithm took 5.1 seconds
to compute the first eigenpair while achieving this high level of accuracy. In
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Table 2: dixmaanl dataset. Results and complexity using the Global algorith-
m, eigs, and modified PI.

Global eigs

` |x̃p`q| # iteration time ` |x̃p`q| time

1st 56515 8.1e-316 (288, 40, 5) 5.1 3311 3.7e-08

30

2nd 57294 8.7e-316 (319, 45, 6) 5.8 3883 3.2e-08

3rd 57936 9.2e-316 (244, 40, 5) 4.6 4306 4.1e-08

4th 58515 8.7e-316 (274, 45, 7) 5.2 4599 8.6e-08

5th 59020 1.2e-315 (276, 45, 5) 5.4 5138 2.9e-08

6th 59536 9.1e-316 (312, 45, 6) 6.3 5401 5.2e-08

Modified PI

` |x̃p`q| time # PI

1st 56460 1.9e-315 894 1.5e+06

2nd 57246 1.8e-315 1173 1.5e+06

3rd 57896 1.7e-315 1442 1.5e+06

4th 58472 1.7e-315 1718 1.5e+06

5th 58988 2.0e-315 1998 1.5e+06

6th 59480 2.0e-315 2292 1.5e+06

comparison, the Matlab eigs function, which computes all 6 top eigenpairs
all at once, has a much inferior eigenvector accuracy. Only the largest ` “
3311 components of estimated v1 achieve the desired accuracy of (19) and
these components are at least |v1p`q| “ 3.7 ¨ 10´8 in magnitude. The total
computation time of the eigs function for all 6 eigenpairs is 30 seconds. This is
comparable with the total computation time of the global algorithm, however,
with a significantly lower level of eigenvector accuracy. For the modified PI,
we see that it can achieve an accuracy that is comparable to that of the global
algorithm. However, the computation time is significantly longer. Due to its
slow convergence, it takes 894 seconds and a total of 1.5 ¨ 106 PIs in order to
attain a similar accuracy as that of the global algorithm. Similar observations
are made for the estimations of the other 5 eigenpairs. The proposed global
algorithm achieves the best accuracy with the shortest computation time. We
note that the main difference between the Global algorithm and the modified
PI is that the former uses inverse power iteration with adaptive shifts, whereas
the latter uses standard power iterations. Our results shown that the proposed
CS-LBE procedure for computing the variable shifts is crucial in accelerating
the convergence speed of the algorithm.

In Table 3, for each eigenpair, we show the value of the shifts used in the
Global algorithm. The shifts are generated using the CS-LBE procedure. For
instance, the column labeled as “1st” lists 5 values of the shifts zi, i “ 1, ¨ ¨ ¨ , 5,
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used in the estimation of the 1st eigenpair. We see that zi approaches the true
λ value (shown in the last row) quickly. For the first eigenpair, only 5 different
shifts are needed. In comparison, for the 4th and the 6th eigenpair, more shifts
7, and 6, respectively, are needed.

Table 3: dixmaanl dataset. Shifts used by the Global algorithm.

1st 2nd 3rd

z1 317.2018759831095 317.0149029206981 317.0054220600994

z2 317.0220587013249 317.0412999365110 317.0056140237707

z3 317.0165531440067 317.0183499796456 316.9974443732343

z4 317.0152788610227 317.0044840756761 316.9980602821128

z5 317.0152899359775 317.0057627487807 316.9980633932562

z6 317.0058090643057

λ 317.0152899359881 317.0058090659085 316.9980633932568

4th 5th 6th

z1 316.9976763951934 316.9908430604246 316.9846066377027

z2 317.0174070334262 316.9924907259373 317.0002253316557

z3 316.9879937432648 316.9843539028472 316.9767242599030

z4 316.9896903234464 316.9849885385036 316.9784124921462

z5 316.9910317369073 316.9849936226933 316.9791679223474

z6 316.9912298325970 316.9791911036812

z7 316.9912300516546

λ 316.9912300516546 316.9849936226963 316.9791911040992

roadNet-CA dataset

For this dataset, the dimension of the matrix is N “ 1971281. This matrix
corresponds to a graph of the road network of California. Each element is
either 0 or 1. The sparsity pattern of this matrix is shown in Fig. 4(b). The
number of nonzero elements in the matrix is nz “ 5533214, see Fig. 4 (b). In
Table 4, we show detailed comparisons of the three methods in terms of the
accuracy of the eigenvector, the complexity, and the running time. We see
that the Global algorithm reaches very good accuracy in terms of ` and |x̃p`q|
for all 6 eigenpairs. Due to the increased matrix dimension, the computation
time increases compared to that of the dixmaanl dataset. The eigs function
can compute the top 6 eigenpairs quickly, using only a total of 38 seconds,
but with a much inferior accuracy in ` and |x̃p`q|. The modified PI algorithm
can achieve a very good accuracy for the top 3 eigenpairs, despite a longer
computation time for using a high number of PI. The accuracy of the remaining
3 eigenpairs is much worse for the given number of PI.
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Table 4: roadNet-CA dataset. Results and complexity using the Global algo-
rithm, eigs, and modified PI.

Global eigs

` |x̃p`q| # iterations time ` |x̃p`q| time

1st 1933344 2.8e-317 (244, 35, 3) 309 1543 8.7e-10

38

2nd 1926704 3.0e-317 (245, 35, 3) 322 1413 1.1e-09

3rd 1957027 2.8e-295 (226, 30, 3) 276 2004 1.0e-09

4th 1948213 2.2e-317 (243, 30, 3) 285 2190 5.3e-10

5th 1956156 2.3e-317 (242, 30, 3) 293 2409 2.9e-10

6th 1923583 2.7e-317 (282, 30, 2) 296 1648 7.8e-10

Modified PI

` |x̃p`q| # PI time

1st 1933452 2.0e-317 1.0e+04 381

2nd 1926900 2.0e-317 2.5e+04 1432

3rd 1957027 2.8e-295 2.7e+04 2062

4th 49653 1.6e-33 5e+04 4700

5th 62901 1.8e-33 7e+03 776

6th 1923767 1.9e-317 5.0e+04 6671

Table 5: roadNet-CA dataset. Computed top 6 eigenvalues using the Global
algorithm, eigs, and modified PI.

global eigs PI

λ1 4.638361867351406 4.638361867351387 4.638361867351406

λ2 4.527027931848926 4.527027931848909 4.527027931848924

λ3 4.451588326941737 4.451588326941750 4.451588326941737

λ4 4.390275021532836 4.390275021532792 4.390275021532837

λ5 4.383736144475813 4.383736144475774 4.383736144475815

λ6 4.325729176980614 4.325729176980572 4.325729176980615

In Table 5, we show the estimated top 6 eigenvalues using the three algo-
rithms. They all find similar eigenvalues.

In Table 6, we show the shifts produced by the CS-LBE procedure. We
observe that, despite the higher dimension of this dataset, the shift values
converge to the eigenvalues quickly. Up to 3 shift values are sufficient to
approach the eigenvalues.
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Abstract

This paper reports the study on Hermitizable problem for complex
matrix or second order differential operator. That is the existence and
construction of a positive measure such that the operator becomes Her-
mitian on the space of complex square-integrable functions with respect
to the measure. In which case, the spectrum are real, and the correspond-
ing isospectral matrix/differntial operators are described. The problems
have a deep connection to computational mathematics, stochastics, and
quantum mechanics.

According to the different objects: matrix and differential operator, the
report is divided into two sections, with emphasis on the first one.

1 Hermitizable, isospectral matrices

Let us start at the countable state space E “ tk P Z` : 0 ď k ă N ` 1u pN ď

8q. Consider the tridiagonal matrix T or Q as follows:

T

Q
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

´c0 b0 0
a1 ´c1 b1

a2 ´c2 b2
. . .

. . . bN´1

0 aN ´cN

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where for matrix T : the three sequences pakq, pbkq, pckq are complex; and for
(birth-death, abbrev. BD-) matrix Q: the subdiagonal sequences pakq and

2020 Mathematics Subject Classifications. 15A18, 34L05, 35P05, 37A30, 60J27.
Key words and phrases. Hermitizable, Matrix, Differential Operators, Isospectrum.
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pbkq are positive, and the diagonal one satisfies ck “ ak ` bk for each k ă N ,
except cN ě aN if N ă 8. For short, we often write T (or Qq „ pak,´ck, bkq
to denote the tridiagonal matrix. It is well known that the matrix Q possesses
the following property:

µnan “ µn´1bn´1, 1 ď n ă N ` 1 (1)

for a positive sequence pµkqkPE . Actually, property (1) is equivalent to

µn “ µn´1
bn´1
an

, 1 ď n ă N ` 1 with initial µ0 “ 1. (2)

In other words, at the present simple situation, one can write down pµkq quite
easily: starting from µ0 “ 1, and then compute tµku

N
k“1 step by step (one-step

iteration) along the path
0 Ñ 1 Ñ 2 Ñ ¨ ¨ ¨ .

At the moment, it is somehow strange to write T and Q together, since they
are rather different. For T , three complex sequences are determined by 6 real
sequences and Q is mainly determined by two positive sequences, or equi-
valently, only one real sequence. However, it will be clear later, these two
sequences have some special “blood kinship”, a fact discovered only three
years ago [6; §3].

Clearly, for Q, property (1) is equivalent to

µiaij “ µjaji, i, j P E, (3)

provided we re-express the matrix Q as paij : i, j P Eq since except the sym-
metric pair pan, bn´1q given in (1), for the other i, j, the equality (3) is trivial.
However, for general real A “ paij : i, j P Eq, property (3) is certainly not
trivial.

Definition 1 A real matrix A “ paij : i, j P Eq is called symmetrizable if
there exists a positive measure pµk : k P Eq such that (3) holds.

The meaning of (3) is as follows. Even though A itself is not symmetric, but
once it is evoked by a suitable measure pµkq, the new matrix pµiaij : i, j P Eq
becomes symmetric. Every one knows that the symmetry is very important
not only in nature, but also in mathematics. Now how far away is it from
symmetric matrix to the symmetrizable one. Consider N “ 8 in particular.
Then symmetry means that µk ” a nonzero positive constant, and so as a
measure, µk can not be normalized as a probability one. Hence, there is no
equilibrium statistical physics since for which, the equilibrium measure should
be a Gibbs measure (a probability measure). Next, in this case, the most part
of stochastics is not useful since the system should die out.

A systemic symmetrizable theory was presented by Hou and Chen in [13]
in Chinese (note that it was too hard to obtain necessary references and so
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the paper was done without knowing what happened earlier out of China).
The English abstract appeared in [14]. Having this tool at hand, our research
group was able to go to the equilibrium statistical physics, as shown in [2;
Chapters 7, 11 and Section 14.5].

One of the advantage of the symmetric matrix is that it possesses the real
spectrum. This is kept for the symmetrizable one. When we go to complex
matrix, the symmetric matrix should be replaced by the Hermitian one for
keeping the real spectrum. This leads to the following definition.

Definition 2 A complex matrix A “ paij : i, j P Eq is called Hermitizable if
there exists a positive measure pµk : k P Eq such that

µiaij “ µj āji, i, j P E, (4)

where ā is the conjugate of a.

Clearly, in parallel to the real case, even though A itself is not Hermitian,
but once it is evoked by a suitable measure pµkq, the new matrix pµiaij : i, j P
Eq becomes Hermitian. Both A and pµiaij : i, j P Eq have real spectrum.

From (4), we obtain the following simple result.

Lemma 3 In order the complex A “ paijq to be Hermitizable, the following
conditions are necessary.

• The diagonal elements taiiu must be real.

• Co-zero property: aij “ 0 iff aji “ 0 for all i, j.

• Positive ratio:
āij
aji

“
aij
āji

ą 0 or equivalently, positive product: aijaji ą 0.

Proof. The last assertion of the lemma comes from the following identity:

α

β̄
“

αβ

|β|2
, β ‰ 0. ˝

Combining the lemma with the result on BD-matrix, we obtain the following
conclusion.

Theorem 4 (Chen 2018, [6; Corollary 6]) The complex T is Hermitizable
iff the following two conditions hold simultaneously.

• pckq is real.

• Either ak`1 “ 0 “ bk or ak`1bk ą 0 for each k: 0 ď k ă N .

Then, we have

µ0 “ 1, µn “ µn´1
bn´1
ān

“ µ0

n
ź

k“1

bk´1
āk

.
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In practice, we often ignore the part “ak`1 “ 0 “ bk” since otherwise, the
matrix T can be separated into two independent blocks.

We now come to the general setup. First, we write i Ñ j once aij ‰ 0.
Next, a given path i0 Ñ i1 Ñ ¨ ¨ ¨ Ñ in is said to be closed if in “ i0. A closed
one is said to be smallest if it contains no-cross or no round-way closed path.
A round-way path means i0 Ñ i1 Ñ i2 Ñ i1 Ñ i0 for example. In particular,
each closed path for T must be round-way.

Theorem 5 (Chen 2018, [6; Theorem 5]) The complex A “ paijq is Hermi-
tizable iff the following two conditions hold simultaneously.

• Co-zero property. For each pair i, j, either aij “ 0 “ aji or aijaji ą 0
(which implies that pakkq is real).

• Circle condition. For each smallest (no-cross-) closed path i0 Ñ i1 Ñ
¨ ¨ ¨ Ñ in“ i0, the circle condition holds

ai0i1ai1i2 ¨ ¨ ¨ ain´1in “ āinin´1 ¨ ¨ ¨ āi2i1 āi1i0 .

In words, the product of aikik`1
along the path equals to the one of product

of āik`1ik along the inversive direction of the path.

Proof. One may check that our Hermitizability is equivalent to A being
Hermitian on the space L2pµq of square-integrable complex function with the
standard inner product

pf, gq “

ż

fḡdµ.

Hence the Hermitizability seems not new for us. However, the author does
not know up to now any book tells us how to find out the measure µ. Hence,
our main task is to find such a measure if possible. Here we introduce a very
natural proof of Theorem 5, which is published here for the first time.

Next, in view of the construction of µ for BD-matrix Q or T , one can find
out the measure step by step along a path. We now fix a path as follows.

i0 Ñ i1 Ñ ¨ ¨ ¨ Ñ in´1 Ñ in, aikik`1
‰ 0.

Comparing the jumps and their rates for BD-matrix and the present A:

k´1Ñk : bk´1, ik´1Ñ ik : aik´1ik

kÑk´1: āk, ikÑ ik´1 : āikik´1
.

From the iteration for BD-matrix

µn“µn´1
bn´1
ān

,

it follows that for the matrix A along the fixed path above, we should have

µin“µin´1

ain´1in

āinin´1

.
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Therefore, we obtain
n
ź

k“1

aik´1ik

āikik´1

“
µin
µi0

. (5)

Thus, if we fixed i0 to be a reference point, then we can compute µik pk “
1, 2, ¨ ¨ ¨ , nq successively by using this formula. The essential point appears
now, in the present general situation, there may exist several paths from the
same j0 “ i0 to the same jm “ in, as shown in the left figure below. We have
to show that along these two paths, we obtain the same µin “ µjm . That
is the so-called path-independence. This suggests us to use the conservative
field theory in analysis. The path-independence is equivalent to the following
conclusion: the work done by the field along each closed path equals zero.
This was the main idea we adopted in [13]. To see it explicitly, from (5), it
follows that

wpL1q :“
n
ÿ

k“1

log
aik´1ik

āikik´1

“ logµin ´ logµi0 .

The left-hand side is the work done by the conservative field along the path L1:
i0 Ñ ¨ ¨ ¨ Ñ in´1 Ñ in, and the right-hand side is the difference of potential
of the field at positions in and i0. Clearly, once in “ i0, the right-hand side
equals zero (let call it the conservativeness for a moment).

-
6

-

�

L2

L1

L1

Inverse L2

1

-
6

-

�

L2

L1

L1

Inverse L2

1

-
6

-

�

L2

L1

L1

Inverse L2

1

-
6

-

�

L2

L1

L1

Inverse L2

1

-
6

-

�

L2

L1

L1

Inverse L2

1

-
6

-

�

L2

L1

L1

Inverse L2

1

Left figure: Two paths from i0 to i#: L1 and L2.
Right figure: Combining L1 and inversive L2 together, we get a closed

path.

For the reader’s convenience, we check the equivalence of the path-independence

wpL1q “ wpL2q

and the conservativeness of the field in terms of the right figure

wpL1q ` wpInverse L2q “ 0.

The conclusion is obvious by using the third assertion of Lemma 3:

wpInverse L2q “ ´wpL2q.

The last property is exactly the circle condition given in the theorem, and so
the proof is finished. ˝
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In the special case that A is a transition probability of a finite time-discrete
Markov chain, the circle condition was obtained by Kolmogorov [15], as a cri-
terion of the reversibility of the Markov chain. It is also interesting that
at the beginning and at the end of [15], the paper by Schrödinger [17] was
cited. Moreover, Kolmogorov studied the reversible diffusion in 1937 [16].
These two papers [15, 16] begun the research direction of reversible Markov
processes (and also the modern Dirichlet theory). It also indicates the tight
relation between the real symmetrizable operators and equilibrium statistical
physics. Nevertheless, the interacting subjects “random fields” and “interact-
ing particle systems” were only born in 1960’s. Even though there are some
publications along this line, the “Schrödinger diffusion” for instance [1], we
are not sure how a distance now to the original aim of Schrödinger who was
looking for an equation derived from classical probability, which is as much
close as possible to his wave equation in quantum mechanics.

It is regretted that the author had a chance to read [15, 16] only a few years
ago when “Selected Works of A.N. Kolmogorov” appeared. Hence, the author
did not know anything earlier about Kolmogorov’s [15, 16]. There is a Chinese
proverb that says “the ignorant are fearless”. For this reason, we were brave
enough to make a restriction “smallest closed path” instead of “every closed
one” in the theorem and then we had gone for much far away, since the total
number of the closed paths may be infinite, even not countable. To illustrate
the idea, let us consider a random chosen wall above. One sees that there
are a lot of closed paths. However, the smallest one is quadrilateral. Hence,
one has to check only the “quadrilateral condition”. To see this, look at the
closed path on the top, and it consists of 7 quadrilaterals. The short path
with dash line on the top separates the whole closed path into two smaller
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ones. To prove that it sufficient to check the “quadrilateral condition” for this
model, we use induction. The idea goes as follows. We can make first the
union of these two smaller closed paths (choose the clockwise direction for one
of the closed paths and choose anti-clockwise for the other one). Then remove
the round-way path with dash line. Thus, once the work done by the field
along each of the smaller closed paths equals zero, then so is the one along
the original closed path since the work done by the field along the round-way
path equals zero.

However, for the second wall below, the smallest closed path, except the
quadrilateral, there is also triangle, so we have the “triangle condition”. It is
interesting, in [2; Chapters 7 and 11], we use only these two conditions; and in
[2; Section 14.5], we use only the triangle condition. The main reason is that
for infinite-dimensional objects, their local structures are often regular and
simple. Besides, in general we have an algorithm to justify the Hermitizability
by computer, refer to [10; Algorithm 1].

We are now arrive at the core part of the paper: describing the spectrum
of the Hermitizable matrix, which is also the core part of the so-called matrix
mechanics. The next result explains the meaning of “blood kinship” mentioned
at the beginning of this section.

Theorem 6 (Chen 2018, [6; Corollary 21]) Up a shift if necessary, each ir-
reducible Hermitizable tridiagonal matrix T is isospectral to a BD-matrix rQ which
can be expressed by the known sequences pckq and pak`1bkq.

The main condition we need for the above result is ck ě |ak|`|bk| for every
k P E. For finite E, the condition is trivial since one may replace pckq by a
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shift pck `mq for a large enough constant m. For infinite E, one may require
this assumption up to a shift.

We now state the construction of rQ „
`

ã, ´c̃k, b̃k
˘

. The essential point is

the sequence
`

b̃k
˘

:

b̃k “ ck ´
uk

b̃k´1
, b̃0 “ c0,

where uk :“ akbk´1 ą 0. This is one-step iteration, and we have the explicit

expression

b̃k “ ck ´
uk

ck´1 ´
uk´1

ck´2 ´
uk´2

. . .

c2 ´
u2

c1 ´
u1

c0

.

Note that here two sequences pckq and pukq are explicit known. Having
`

b̃k
˘

at hand, it is easy to write down ãk “ c̃k ´ b̃k with c̃k “ ck for k ă N , and
ãN “ uN{b̃N if N ă 8. The solution of pãkq and pc̃kq are automatic so that
rQ becomes a BD-matrix.

The resulting matrix rQ looks very simple, but it contains a deep intrinsic
feature. For instance, the reason is not obvious why the sequences

`

b̃k
˘

and
pãkq are positive even though so are pckq and pukq. With simple description
but deep intrinsic feature is indeed a characteristic of a good mathematical
result.

To see the importance of the above theorem, let compare the difference
of the principal eigenvector of these two matrices. First, for BD-matrix with
four different boundaries, the principal eigenvectors are all monotone, except
in one case, it is concave. This enables us to obtain a quite satisfactory theory
of the principal eigenvalues (refer to [4]). However, since the Hermitizable T
has real spectrum, from the eigenequation

Tg “ λg,

one sees immediately, the eigenvector g must be complex, too far away to
be monotone. Thus, the principal eigenvectors of these two operators are
essentially different. It shows that we now have a new spectral theory for the
Hermitizable tridiagonal matrices.

Because the intuition is not so clear why Theorem 6 should be true, two
alternative proofs are presented in [7].

Theorem 7 (Chen 2018, [6; Theorem 24]) The spectrum of a finite Hermi-
tizable matrix A is equal to the union of the spectrums of m BD-matrices,
where m is the largest multiplicity of eigenvalues of A.
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Refer to [10; Proofs in §4] for details. The proof is based on Theorem 6
and the “Householder transformation” which is one of the 10 top algorithms
in the twentieth century. The restriction to the finite matrix is due to the use
of the transformation. The number m is newly added here which comes from
the fact that the eigenvalues of BD-matrices must be distinct and simple, as
illustrated by [10; Example 9].

Theorem 7 provides us a new architecture for the study on matrix me-
chanics (and then for quantum mechanics) since we have a unified setup (BD-
matrix) to describe its spectrum. This leads clearly to a new spectrum theory,
as illustrated by [7] for tridiagonal matrix and by [11] for one-dimensional dif-
fusions. It also leads to some new algorithms for computational mathematics,
as illustrated by [10, 9].

2 Hermitizable, isospectral differential operators

Two approaches for studying the Schrödinger operator
1) The most popular approach to study the Schrödinger operator

L “
1

2
∆` V

is the Feynman-Kac semigroup tTtutě0:

Ttfpxq “ Ex

"

fpwtq exp

„
ż t

0
V pwsqds

*

,

where pwtq is the standard Brownian motion. This is often an unbounded
semigroup. The Schrödinger operator was born for quantum mechanics, and
it is 95 years older this year. In the past hundred years or so, there are a huge
number of publications devoted to the operator. However, for the discrete
spectrum which is the most important problem in quantum mechanics, the
useful results are still very limited as far as we know. In particular, even in
dimension one, we have not seen the results which are comparable with [5].

2) As in the first section, this paper introduces a new method to study the
spectrum of Schrödinger operator. That is, replacing the operator L above by

L̃ “
1

2
∆` b̃h∇,

where h is a harmonic function: Lh “ 0, h ‰ 0 (a.e.). Then, the operator L
on L2pdxq is isospectral to the operator rL on L2pµ̃q :“ L2p|h|2dxq.

We now consider a general operator. Let aij , bi, c : Rd Ñ C, V : Rd Ñ R,
and set a “ paijq

d
i,j“1, b “ pbiq

d
i“1. Define dµ “ eV dx and

L “ ∇pa∇q ` b ¨∇´ c.

Here is the result on the Hermitizability. Denote by aH the transpose pa˚q
and conjugate pāq of the matrix a.
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Theorem 8 (Chen and Li 2020 [11]) Under the Dirichlet boundary condi-
tion, the operator L is Hermitizable with respect to µ iff aH “ a and

Re b “ pRe aqp∇V q,
2 Im c“´

`

p∇V q˚`∇˚
˘`

pIm aqp∇V q`Im b
˘

.

Recall that a key point in the isospectral transform of T and rQ is that
the resulting matrix rQ obeys the condition c̃k “ ãk ` b̃k for each k ă N , and
there is no killing/potential term at the diagonal (maybe except only one at
the endpoint if N ă 8). In the next result, we also remove the potential term
c in L.

Theorem 9 (Chen and Li 2020 [11]) Denote by DpLq the domain of L on
L2pµq and let h be harmonic: Lh “ 0, h ‰ 0 (a.e.). Then pL,DpLqq is
isospectral to the operator

`

rL, DprLq
˘

:

#

rL “ ∇pa∇q ` b̃ ¨∇,
DprLq “

 

f̃ P L2pµ̃q : f̃h P DpLq
(

;

where

b̃ “ b` 2Repaq1rh‰0s
∇h
h
, µ̃ :“ |h|2µ.

The discrete spectrum for one-dimensional elliptic differential operator is
also illustrated in [11]. Certainly, much of the research work should be done in
the near future. For instance, Hermitizable operator is clearly the Hermitian
operator on the complex space L2pµq. It naturally corresponds to a Dirichlet
form. Hence there should be a complex process corresponding to the operator.
It seems that this is still a quite open area, except a few of papers, Fukushima
and Okada [12] for instance.

In conclusion, the paper [13] published 42 years ago opened a door for us
to go to the equilibruim/nonequilibrium statistical physics (cf. [2, 3]); the
paper [6] that appeared 3 years ago enables us to go to quantum mechanics.
The motivation of the present study from quantum mechanics was presented
in details in [8] but omitted here.
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